The elemental abundances in the intracluster medium as observed with XMM-Newton Takayuki TAMURA

(ISAS, Japan Aerospace Exploration Agency=JAXA)

- Introduction
 galaxy cluster, ICM, abundance rations, supernovae
 Ia/II
- 2. XMM observations and analysis of 19 clusters
- 3. Results
- 4. Discussion and Future Prospects

Collaborated with J.S. Kaastra, J. W. den Herder, J. A. M. Bleeker (SRON), J. R. Peterson (Stanford)

3/26/2004 2004-3 T.Tamura @ GSFC/NASA

cD galaxy

cD galaxy

A1689 HST, N. Benitez (JHUACS Science Team, ESA, NASA)

Galaxy Cluster

Star

◆ 100-1000 of galaxies

Hot Plasma (Intra-Cluster Medium)

- ightharpoonup Ne = 10⁻⁴-10⁻² cm⁻³
- $Te = 10^7 10^8 \text{ K}$
- ightharpoonup L = 100 kpc 1 Mpc
- ◆ More massive than stellar mass.
- ◆Metal rich

Dark Matter

- Kinetic energies of galaxies and plasma, Gravitational lenses indicate large mass.
- More than 10 times massive than stars and plasma

Largest system bounded by the dark matter potential

3/26/2004

2004-3 T.Tamura @ GSFC/NASA

4

- ◆ Spatially resolved X-ray spectroscopy (BBXRT, ASCA, SAX) -> Si, S, Fe distributions.
- ◆ An excess of Fe around cD galaxy (e.g. Fukazawa et al. 2000; De Grandi and Molendi 2001)
- ◆ Variations of the Si/Fe ratio with a cluster (e.g. Finoguenov et al. 2000) and *among clusters* (Fukazawa et al. 1998).

3/26/2004

2004-3 T.Tamura @ GSFC/NASA

7

Limitations before XMM/Chandra

Spatial and spectral resolution of previous instruments are limited.

- a systematic uncertainty in the temperature structure. (particularly important in the central cool regions). severe errors in the abundances of Fe and other elements.
- In most cases these measurements are limited to the Fe, Si and S abundances (Not O).

XMM-Newton (1999-)

- ◆ EPIC (CCD; PN+MOS)
 - * Larger effective area in 0.3-10 keV.
 - * Better spatial resolution (15" in PSF HPD).
 - * Better spectroscopic capability in low X-ray energy band.
 - ♦ (high background)

- ◆ RGS (Reflection Grating Spectrometer)
 - High resolution spectroscopy in 0.3-2 keV (O and Fe-L resolved spectrum)
 - * Only for peaked X-ray core of clusters.

3/26/2004

2004-3 T.Tamura @ GSFC/NASA

0

XMM Observations

	Z	T(ICM; keV)
NGC 533	.018	1.3
A 262	.016	2.2
Ser 159 *	.057	2.4
MKW 9	.040	2.6
2A 0335	.034	3.0
A 2052 *	.036	3.1
Hyd-A	.055	3.4
MKW 3s	.046	3.5
A 4059	.047	4.0
A 1837	.071	4.4

z T		T(ICM; keV)	
A 496	.032	4.4	
A 3112 *	.077	4.5	
A 1795 *	.064	5.8	
A 399	.071	6.2	
Perseus	.018	6.5	
A 1835	.254	7.2	
Coma *	.024	7.5	
A 754	.056	8.0	
A 3226	.061	8.7	
•		•	

Cool, med-T, hot clusters

Soft excess (<0.5 keV) clusters (*)

3/26/2004

2004-3 T.Tamura @ GSFC/NASA

10

EPIC Spectral Analysis

Spectral Extraction

- Remove high background periods.
- Remove the bright X-ray sources.
- Corrections for the PSF and vignetting.
- ◆ Concentric spectra of 0-0.5-1-2-3-4-6-9-12 arcmin. in radius (spherical symmetry) Deprojection of spectra
 (Kaastra et al. 2004 in detail)

Fitting

- Systematic errors:
 - * Source 5-10 %
 - * Background 10-35 %
- ◆ Collisional Ionization Equilibrium model (mekal).
- ◆ Fixed N_H (Galactic).
- ◆ A single temperature model, except for some central regions (2T model).
- Free parameters:
 - * Norm, T, O, Ne, Mg, Si,S, Ar, Ca, and Fe abundances.

3/26/2004

2004-3 T.Tamura @ GSFC/NASA

11

Present Results

- 1. No significant variation in the Fe abundance and the Si, S, and O ratios to the Fe among the systems.
- 2. The O/H and O/Fe ratio in the cluster cores, are 0.34 ± 0.03 and 0.63 ± 0.05 , respectively. The r.m.s. deviation is comparable to the measurement errors on these ratios.
- 3. In all clusters with a temperature less than 6keV, except for MKW~9, we detected a central increase in the Fe abundance; 0.6-0.8 solar at the center, 0.2-0.4 solar in outer region.
- 4. The Si/Fe and S/Fe ratios in cool and medium temperature clusters are radially uniform within $(200-500)h^{-1}$ kpc with mean values of 1.4 ± 0.2 and 1.1 ± 0.3 , respectively.
- 5. Contrary to the Fe, Si, and S abundances, the O abundance shows no spatial variations. When we combine the results from several clusters, we detected a significant radial variation in the O/Fe ratio.

3/26/2004 2004-3 T.Tamura @ GSFC/NASA

19

Discussion I: SN ratio in the cluster centers (accurate measure of O)

- ◆ The observed metal ratios (e.g., O/Fe) are between SNIa and SNII predictions.
- ◆ The cluster center gas could be produced by SNIa+SNII.
- $\begin{array}{l} \bullet \ \ N_{Ia}/N_{II} \ \sim 0.6, \\ M^{Fe}_{Ia}/M^{Fe}_{total} \ \sim \ 0.8, \\ M^{O}_{Ia}/M^{O}_{total} \ \sim \ 0.05 \end{array}$

3/26/2004

Discussion II:

total Oxygen mass and total number of SNII at the cluster core

Measurement
Observed O mass within 50h⁻¹
kpc:
10⁸-2x10⁹ h^{-2.5} Msun

Theoretical assumption:

- 1. All O was originated from SNII.
- 2. One SNII produces 2 Msun Oxygen (Tsujimoto et al. 1995).

108-2.5x109 of SN II.

10⁷ year (a typical life time of a 20 Msun star) x (10-200) SN IIe/year.

(cf. a typical starburst galaxy ~ a few SNII/year)

3/26/2004

Discussion III: Origins of the ICM metals

- ◆ Si, S, Fe show similar central increase, but O shows no spatial variations.
- ◆ Consistent with that Si-S-Fe for a large part have a common origin, while the O has a different origin.
- One possibility:
 - * Outer region (Cluster as a whole): Past SN II and SN Ia metal has been mixed.
 - Central region : recent SNIa metal causes an excess in Si-S-Fe.

Future Prospects Still large uncertainties in...

- O abundance in outer region of clusters.
 - * Intrinsic EW of O lines is smaller than the CCD energy resolution.
 - * Much cooler component (e.g. Soft excess/WHIM) could emit the O lines.
 - * Astro-E2 XRS or XIS.
- Fe abundance in much outer region.
 - * The X-ray brightness is low in outer region, but large amount of the ICM.
 - Line emission measurements is limited by background and telescope PSF tail and stray photons.
 - * Line absorption of metals could be used in outer region in future. XMM/RGS
- ◆ Other elements such as C, N, Ne, Mg, Ni...
 - Detailed measurements in M87/XMM (e.g. Finoguenov et al. 2002).
 - Astro-E2 XRS.
- Redshift evolution of the metals.
 - * We only know metallicity within z < 0.3-0.5. Metal productions may occurred at z > 2-3.
 - Next generation satellites.

3/26/2004

2004-3 T.Tamura @ GSFC/NASA

23

References

- •Tamura et al. 2001, A&A 379, 107
- Peterson et al. 2003, ApJ, 590, 207
- •Kaastra et al. 2004, A&A, 413, 415
- Tamura et al. (2004) A&A accepted

3/26/2004

